
IJSER © 2017
http://www.ijser.org

Stacking Sequence and curing Temperature
Effect on Natural Frequency of Hybrid fiber

Reinforced Composite Laminate
Dr. Hakim Saeed Muhammed, Luay Muhammed Ali Ismaeel

Abstract: In this work, a multi-lamina hybrid fiber reinforced structure was statically and harmonically analyzed for the purpose of studying the effect of
stacking sequence, curing limit upon induced stresses and natural frequency of free longitudinal in-plane vibrations. The effect of boundary conditions of
the structure on the natural frequency under free longitudinal vibration due to the tension was also studied. The laminate was suggested to be composed
of 4 layers and subjected to a tensile force with thermal load represented by curing the structure at a temperature of 240 oC, then it is cooled to a
temperature of 23℃. Two stacking layouts are suggested (0o/90o /0o/90o and 0o/90o/90o/0o) in order to investigate their effects on the natural frequency.
The software of FEA ANSYS v.14 is taken to manipulate the project data. A comparison between numerical results obtained from the software and
theoretical ones obtained from the analytical solution based on Generalized Hooke's Law and classical lamination theory was made for the purpose of
results verification. Good convergence was found between the two sets of results referred to above.
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1  INTRODUCTION:
n many engineering and industrial applications plate
structures are widely used and the vibration problems
became very critical and sensitive in dynamic applications

since the probability of occurrence of resonance is likely to
happen. It is very important to make these structures as thin
as possible for the purposes of total weight and cost, but for
the purpose of strength and durability, it is essential to have
some extra thickness. In addition, the fundamental
frequency is decreased as the thickness gets reduced, so to
compromise on these controversial issues, it is resorted to
fiber reinforced composite plate structures. The various
schemes of structures reinforcing by continuous fibers or
other methods are normally recommended and approved
for various high-specific-strength and -stiffness applications
with a minimally safe thickness. Since they are exposed to
fail due to resonance under different excitations. Composites
and hybrid composites substitute materials in various
industrial and engineering structures such as aero-space,
land- and marine-applications, special-purpose and
pressure tanks for their specific functional requirements and
characteristics. The mechanical behavior of such structures
is widely different from those isotropic counterparts due to
their orthotropicity of constituting laminates. To avert the
damage of such entities arised from undesired-harmful
vibrations and resonance, it will be so necessary to define
and compute the resonant-natural frequencies of a structure,

such that spectrum, transient and frequency analyses
include modal analysis must be carried out, where the
natural frequencies of them can be found [1]. The mode
shapes must also be determined in order to strengthen the
maximally critical sections or to specify suitable locations
where it is necessary to minimize part weighing or to
maximize dampening [2]. Sahu and Asha (2005) [2,3], used
an 8-noded-isoparametric element of quadratic shell type to
achieve a finite element analysis, in order to study the
stability and response of pre-twisted-panels, in addition to
the effect of various geometrical parameters such as the
twist-angle, aspect ratio, variable factors of lamination,
shallowness ratio . Tita (2003) [3] worked on the theoretical
and experimental dynamic analysis of E-glass reinforced epoxy
resin. He used [0/90] S and [±45] S laminates in his work. The
laminates were fabricated by hand-lay-up process and cut to beam
shape specimens. The specimens were used as free end beams in
the vibration measurements. He calculated the mechanical
properties of the composite analytically and used them in his
simulations of the dynamic properties. He presented his ANSYS®
simulation results in contour format showing the mode types and
shapes. His experimental results on vibration are in a graphical
format demonstrating the frequency response of the two laminates.
Colakoglu performed vibration experiments on 10-layer beam
specimens of glass polyethylene composite at a range of
temperatures. The vibration was induced by the impact of spherical
steel ball hammer [4]. ANSYS® numerical simulations were also
used to obtain the frequency response. Teng and Hu (2001) [5]
discussed the designing variables and effective factors for
constrained-lamina-damping structures using Ross-Kerwin-Ungar
(RKU) model.
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They also investigated the effects of temperature,
frequency and damped structures dimensions on
vibration damping features and properties. Nayak et
al. during 2002 prepared a higher order theory for the
vibration characteristics of the laminated plate [5].
Chao presented free vibration natural frequencies of
rectangular plates [6]. Jaehong prepared in 2002 a
generally-analytical-model which can be
appropriately applied to the dynamic response of a
thin wall channel composite section [7]. Ajay
introduced an analysis depending on a higher-order
shear deformation theory for the free vibration
behavior of sandwiched-skew laminates [8]. Jun, L. et
al. studied the free vibration and buckling behaviors of
axially loaded laminated composite beams having
arbitrary lay-up using the dynamic stiffness method
[9].   Mehmet ÇEVIK discussed the in-plane-free
vibration behavior of symmetric angular-ply
laminated composite curved beams and performed it
using finite-element-method. The effects of rotary
inertia and shear deformation were considered in the
discussion. The curved members with opening angle
(α) from 30° up to 270°are considered. Studies related
to various affecting factors were achieved to
investigate the influences of angle of fiber inclination,
boundary conditions, orthotropicity of material
properties, (radius/width) ratio and layers number
upon resonant-natural-frequency [10]. In a torsional
loading mode of traditional and classical composite
materials, the free vibration analysis have also been
widely conducted, such that finding of free torsional-
vibrations-properties, of composite laminate is
considered one of important criteria for design and
configuration of parts in  engineering and industry.
Mohammed Fahmy Aly (2013) studied and
investigated the twisted vibrations of composite multi-
layers laminates of doubly symmetric cross-sections
analytically using theory of classical-lamination (CLT)
while, the coupling of bending and twisting
deformation caused by inclination of fibers of the
laminates was ignored. The researcher also
investigated twisting vibrations of the laminates
depending on shear-deformation-theory where the
shearing  distortion  influences  were  accounted  for
[11].The applications where the torsion and bending
loading are combined in a part are also investigated by
M. L. Pavan Kishore and R. K. Behera (2015). A typical
impulse-propeller constructed from conventional
composites was produced and its vibration features
and properties were analyzed. Optimal design of a
fiber-reinforced-composite impulse-propeller was
achieved for different restricted and unrestricted
designing purposes. Only symmetric-ply stacking
layouts were considered. Results show that the ply
stacking sequence has an effect on the characteristics of
a conventional propeller. Proper stacking sequence of
the composite propeller improves its performance as
compared to its metallic counterpart [12]. For hybrid
fiber reinforced composites, Omar A. Mohammed
studied the effect of number of carbon layer, position
and orientation angle of the laminate on the natural
frequency  and  mode  shape  for  hybrid  fiber

(carbon/glass) with epoxy composite laminates only.
Numerical analyses were used to study vibration
behavior of composite laminated beams using ANSYS
13 software. The results showed that the natural
frequencies increased when the number of carbon
layer increases and decreased when the carbon layer
position changes from the surface towards mid-plane,
also; the natural frequencies change with changing
orientation angle [13]. If the exciting frequency is kept
rather moderate, through increasing the structural-
natural frequency, the probability of resonant damage
occurrence could then be minimized. In accordance
with that, some of the experts and specialists during
the last three decades of last century concentrated on
increasing the lowest harmonic frequency of laminated
structures. They studied the effect of various boundary
conditions and loading schemes on the maximum
fundamental frequency of angle ply composite
laminates [14]. In this work unlikewise to previous
literatures mentioned above, a thermo-mechanical
analysis is made considering a hybrid fiber reinforced
composite plate structure composed of 4 layers in a
crossed ply laminated structure. Boundary conditions,
curing temperature and stacking sequence are taken as
the study parameters and their effect on the natural
frequency is also investigated. The problem is solved
through the finite element technique by the package of
ANSYS v.14 using element type of three dimensional
layered shell element 4node181as shown in Fig.1. This
element is adopted since it permits introducing and
saving the properties of all layers of a composite
structure and it has six degrees of freedom including
in- and out of plane linearly displaced deformation.
The elastic properties of the hybridized materials are
calculated using MATLAB v.2011.

2  FINITE ELEMENT MODELING OF THE HYBRID
COMPOSITE PLATE STRUCTURE

The geometry of the hybrid laminated composite plate
structure is illustrated in Figure 2. The multilayer
unidirectional laminated composite plate structure
consisting of 4 to 6 layers from hybrid fiber reinforced
composites composed of short (chopped) boron fibers
embedded in a matrix material of epoxy, polyester,
polyamide  and  polyethylene  to  form  together  a
composite matrix. The latter then is reinforced with
long continuous parallel fibers of the same type as the
chopped ones for the purpose of economizing. The
plate is 400-mms. long, 20-mms wide and of 4.8 mms
thick. The structure is then meshed using three
dimensional layered structural shell element 4node181
as shown in Fig.1.

3  MATHEMATIC FORMULATION OF THE PROBLEM
AND MODEL ELASTIC PROPERTIES

Under bending the controlling relevant vibration differential
formulas can be obtained from the buckling differential
equations by adding an acceleration term to the right-hand
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part of the like-equilibrium-formulas. As with both plate
bending and buckling problems, plate vibrations include
coupling between bending-twisting when the plate is
unsymmetrically laminated. For symmetrically laminated
plates, the coupling vanishes. The governing differential
equations of such a problem are as following [15, 16]:

 , +  , = 0 (1)

 , +  , = 0 (2)

 , + 2  ,  +  ,  +
, + 2 , +  , =

 , (3)

When the coupling vanishes, the vibration case could then
be converted to the solution’s form of Eq.3, since the rotary
inertia effects are ignored. There is another possibility of a
different type of coupling which is the bending-extension
coupling which is more likely to happen in our model. The
classical lamination theory (CLPT) is adopted to be the basis
on which the problem is manipulated. The classic theorem
of laminated plates whose acronym (CLPT) depends upon
on Kirchhoff’s presumptions, assuming that transversely
normal with shearing stresses throughout the cross-section
of plates are ignored. In elaboration this theorem, some extra
presumptions are accounted for as under [17]:
1. The layers are perfectly bonded together (assumption).
2. The material of each layer is linearly elastic and has three
planes of material symmetry (i.e., orthotropic).Each layer is
of uniform thickness.
3. The strains and displacements are small.
4. The transverse shear stresses on the top and bottom
surfaces of the laminate are zero.
Considering the above assumption the displacement field of
CLPT is of form:
u(x, y, z) = u0 (x, y) -

v(x, y, z) = v0 (x, y) -                                                   (4)
w(x, y, z) = w0 (x, y)

Where (uo, vo, wo) are the linear displacement-constituents
throughout the (x-y-z) Cartesian-coordinate axes, seriesly, of
a point on the middle plane (at z equals zero). The
displacement-field requires that straight lines perpendicular
to x-y-plane prior to distorsion are still straight-normal to the
middle surface afterwards (beyond deformation). In the
derivation process, the undermentioned essential
presumptions were made:
1. The plate is constructed of an arbitrarily chosen
magnitude of orthotropic plies assembled and joined
together. The principal-axes of material of each single ply
need not to geometrically conform to plate axes.
2. The plate is thin and has a constant thickness; i.e. the
thickness h is much smaller than other dimensions.

3. The inplane displacements u, v in x and y directions,
respectively, and the transverse displacement w in the z-
direction are all small compared to the plate thickness.
4. Inplane strains ɛx; ɛy, and γxy are small compared to
unity.
5. Each ply obeys Hooke’s law; linear elastic behavior.

4  GENERAL VIBRATIONAL ANALYSIS
Free vibration means the motion of a structure without any
dynamic external forces, moments or support motion. The
general equation of motion of an undamped linearly-SDOF-
structures can be referred to as [18]:

+ = (5)
Free vibration can be commenced by exciting a structure at
its static-equilibrium-status. By giving the mass certain an
initial-displacement u (0) and initial-velocity ̇ (0), at a zerol-
time, characterized as the instant- motion is commenced:
u = u (0), ̇  = ̇ (0) (6)
Solving of Eq.5 is obtained by standard methods as:
u(t) = u(0) cos + ̇  ( ) (7)
Where natural-circular-frequency of oscillation expressed in
units of (rad/sec) is given by:

= (8)
The duration taken for a non-damped entity to achieve a
single-cycle of free-vibration is the natural time-period of
oscillation of that assemblage.
Tn = (9)
Natural-cyclic-frequency of oscillation (vibration) is
symbolized as ( = ), unit in Hz (cycle/sec).

4.1 Mode Shape Formulation
The solution of an Eigen value problem can result in the
natural frequencies and mode shape of an assembly. The set
free-vibration of a non-damped structure in one of its
natural-vibration-modes can be represented by the
following expression:

( ) = ( ) (10)
Where, is not a time-dependent parameter. The time-
alteration of the displacements can be represented by the
following simple-harmonic-equation (SHE):

( ) = + sin                                                    (11)
An, Bn are constants of integration. Combining above two
equations results in:

( ) =  ( + sin ) (12)
Putting in equation of undamped free vibration, we have:
[− + ] ( ) = 0  (13)
Either, ( )= 0, ⇒ u(t)= 0 , trivial solution Or,
[ − ] = 0 (14)

A group of ‘n’ algebraic -homogeneous equations is for that
‘n’ no. of element. This set has always the trivial solution

= 0 , it implies no motion. The nontrivial solution is:
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det⌊ − ⌋ = , This is called frequency equation.  (15)
It gives N roots in   determine N natural frequencies. The
roots are called Eigen values or normal values., there are N
independent vectors ( )  which  are  called  natural  mode
shapes of vibration corresponds to the N natural vibration
frequencies  of an N-DOF System, Eigen vectors or normal
modes i.e. ({φ}i – Eigenvector) representing the mode shape
of the ith natural frequency. It is possible for the Eigen
vectors to be found from the following matrix-form-
expression [19]:
|[ ] − [ ]| = (16)
Where [ ] = Dynamic matrix, or often called materials
properties matrix [ ] = Stiffness matrix, [ ] = Mass matrix.
Such that:
[ ]= [ ]-1 [ ], Eigen vector  = 2.
The element stiffness matrix can be expressed as:
[ ] = ∬[ ]T. [ ]. [ ] dx.dy (17)
Where: [B] is the standard strain- displacement matrix. The
consistent mass matrix is expressed as:
[ ] = ∬[ ]T. [ ]. [ ] dx.dy                                                                     (18)
Where: [N] is the shape function matrix in (ξ, η, ζ
coordinates) prescribed in terms of non-dependent
parameters such as (x, y, etc.), and the term [P] is often
referred to as the stress divergence or stress force term such
that [19], [20]:

u = [N]. ⃑    ,      ε = [B]. ]. ⃑    and      σ = [d] . [B]. ⃑ (19)

4.2 Analyzing of Natural-Frequency of a Laminate:
4.2.1 Displacement:
In a more specific discipline, the controlling differential
expression for free-vibration of symmetric laminates    in
accordance with the theorem of classical lamination in terms
of  the dynamic equilibrium of the infinitesimal element
shown in Fig. 3 yields the following partial differential
equation of motion (neglecting both shear deformation and
rotary inertia) [21]:

+ 2 ( + 2 ) + =  −      (20)
In the derivation process, the undermentioned essential
presumptions has been made:

1. The plate is constructed of an arbitrarily chosen sum
of orthotropic plies assembled together by an
adhesive. The principal axes of a certain single ply
material needn’t to be matched with geometrical
coordinate-axes of the plate.

2. The plate is thin and has a constant thickness; i.e. the
thickness h is much smaller than other dimensions.

3. The inplane displacements u, v in x and y directions,
respectively, and the transverse displacement w
in the z direction are all small compared to the plate
thickness.

4.   Inplane strains εx; εy, and εxy are small compared
to unity.

5. Each ply obeys Hooke’s law; linear elastic behavior.
Where D11, D12, D22, and D66 are rigidities in the
principal materials axis-direction, and  is  the
averaged mass-density of all laminates.

4.2.2 Stress-Strain Relationships and Equation of
Motion
The total strains can be given as [17], [22]:

= + ∗ (21)

     =

⎣
⎢
⎢
⎢
⎡

+ ⎦
⎥
⎥
⎥
⎤

+ ∗

⎣
⎢
⎢
⎢
⎡ −

−

−2 ∗ ⎦
⎥
⎥
⎥
⎤

(22)

Where ( , , ) are the membrane strains and
( , , ) are the flexural (bending) strains, known as the
curvatures [23]. The transformed stress-strain relations of an
orthotropic lamina in a plane state of stress are; for  can
be given as:

= (23)

The resultant of in-plane forces Nxx, Nyy and Nxy and
moments  Mxx,  Myy  and  Mxy  applied  on  a  laminated
structure can be mathematically found by stress-integration
method in every ply or layer through the laminated
structure-thickness. Using the stress in terms of the
displacement, we can obtain the in-plane force resultants
Nxx, Nyy, Nxy, and moments Mxx, Myy and Mxy. The in-
plane force resultants can be given as:

= ∑ ∫ (24)

Where  ,  are the normal and shear stresses.

= + (25)

While the moments (Mxx, Myy and Mxy) are calculated as
following:

= ∑ ∫ .                              (26)

= +  (27)

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 
ISSN 2229-5518 1726

IJSER



IJSER © 2017
http://www.ijser.org

Where Aij are the extensional strain stiffness, Bij the coupling
stiffness, and Dij the bending stiffness. These stiffnesses are
determined as below [17], [23]:

= ∑ ( − )                                                              (28)
= ∑ ( − )                                                    (29)
= ∑ ( − ) (30)

When the temperature effect is encountered, the stress-strain
relations will be put in the following forms [24]:

=

⎣
⎢
⎢
⎢
⎡ −

 −

+  − ⎦
⎥
⎥
⎥
⎤

+ ∗

⎣
⎢
⎢
⎢
⎡ −  −

−  −

−2 ∗  − ⎦
⎥
⎥
⎥
⎤

  (31)

For uniform linear temperature change: ∆ = ( , , ) −
( , , ), thus Eq. 31 becomes:

=

⎣
⎢
⎢
⎢
⎡ −  ∆

 −  ∆

+  −  ∆ ⎦
⎥
⎥
⎥
⎤

+ ∗

⎣
⎢
⎢
⎢
⎡ −

−

−2 ∗ ⎦
⎥
⎥
⎥
⎤

                    (32)

Where ,  are the thermal expansion
coefficients defined as:

= +
= +

2 = 2( − ) cos                                                            (33)
Where  are the longitudinal and transverse
thermal expansion coefficients respectively and  is the
lamination angle. The change in temperature can be defined
as:

∆  = applied temperature – reference temperature
Where reference temperature = 23 ℃
The transformed stress-strain relationships of an orthotropic
lamina in a plane state of stress in terms of   and including
temperature effect are put in the form of [15], [17], [23]:

=
 ∆

 ∆

− 2  ∆
                         (34)

When accounting for determination of thermal and bending
stresses  respectively such that [23], [24]:

 ,
 ,
 ,

=

∑ ∫
2

(1 , ) ∆                        (35)

Then, the equation of motion including the thermal effects is
got to be:

0 0
0 0
0 0

̈
̈
̈

+ =
0
0 +

                                                                                           (36)

Where  Cij  terms  are  the  stiffness  Matrix  terms  of  the
composite materials.
and = +  , =  + =

 − + 2 +                                                   (37)

5  ELASTIC PROPERTIES DETERMINATION
The hybrid composite materials used in this research are
composed of a composite matrix constituted from a typical
matrix such as epoxy or polystyrene reinforced with short
fibers randomly distribute throughout as shown in Fig. 4.
Thus this composite matrix displays an isotropic elastic
behavior. The composite matrix is then reinforced with long,
parallel and equally spaced fibers to form the hybrid fiber
reinforced composite lamina as shown in Fig.4 which
represents the constituent unit of the whole laminate
structure of interest. Let (E1m and E2m) be the longitudinal
and transverse moduli for unidirectional fiber 0° composite
matrix shown in Fig.3 of the same fiber aspect ratio and fiber
volume fraction as the randomly oriented discontinuous
fiber matrix, so [25], [26]:

= . ƒ .ƞ .∀

ƞ .∀
  .                                                                                (38)

=  .ƞ .∀
ƞ .∀

  .                                                                                   (39)

=  ƞ .∀
ƞ .∀

  .                                                             (40)
= . ∀ + . ∀                                                       (41)

Where:

ƞ =
.

                                                                               (42)

ƞ =                                                                                   (43)

ƞ = (44)

The terms E1m, E2m, G12m and   are the basic elements
to determine the elastic constants of the composite matrix
namely [26]:

= . + . (45)
= . +  . (46)
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Since the composite matrix is assumed to behave
isotropically as referred to above, then the Poisson's ratio of
the composite matrix ( ) can be given as:

=
.

− 1                                                                        (47)
Thus for the whole hybrid composite lamina shown in Fig.5,
the overall elastic properties E1, E2, G12 and  are derived
from the first principles given in the relevant references to be
given respectively as [27]:

= . ∀ + 1 − ∀ . E . ∀ . .ƞ .∀

∀ ƞ .∀
+

. ∀ . ƞ .∀

∀  ƞ .∀
                                                                    (48)

=
.

. ∀ . .ƞ .∀

∀ ƞ .∀

. ∀ .ƞ .∀

∀  ƞ .∀

( ∀ ) .∀
. ∀ . .ƞ .∀

∀ ƞ .∀

. ∀ .ƞ .∀

∀  ƞ .∀

             (49)

=
. .

∀ . .ƞ .∀

∀ ƞ .∀

. ∀ .ƞ .∀

∀ ƞ .∀

. . ∀ .∀
∀ . .ƞ .∀

∀ ƞ .∀

. ∀ . .∀

∀  ƞ .∀

        (50)

= . ∀ +
.

− 1 1 − ∀ = . ∀ +

 . 1 − ∀                                                                              (51)

And
=                                                                                                (52)

Where:
E1m: Longitudinal moduli for a unidirectional discontinuous
fiber 00 composite matrix, combined of resin and
discontinuous fiber.
E2m: Transverse moduli for a unidirectional discontinuous
fiber 00 composite matrix, combined of resin and
discontinuous fiber.
Ecm: Moduli of isotropic composite matrix, combined of resin
and random discontinuous fiber.
E1: Longitudinal modulus for unidirectional continuous
fiber  0o composite lamina, combined of composite matrix
and continuous fiber.
E2: Transverse modulus for unidirectional continuous fiber
0o composite lamina, combined of composite matrix and
continuous fiber.
Esf: Moduli of discontinuous fiber material.
Ef: Moduli of continuous fiber material.
Em: Moduli of resin material.
G12m: Shear modulus for a unidirectional discontinuous fiber
0o composite matrix.
Gcm: Shear modulus of isotropic composite matrix.
G12: Shear modulus for a unidirectional continuous fiber 00
composite lamina.
Gsf: Shear modulus of discontinuous fiber material.
Gf: Shear modulus of continuous fiber material.
Gm: Shear of resin material.

12m: The major Poisson's ratio for a unidirectional
discontinuous fiber 00 composite matrix.

cm: Poisson's ratio of isotropic composite matrix.
12: The major Poisson's ratio for a unidirectional continuous

fiber 0o composite lamina.
sf: Poisson's ratio for discontinuous fiber material.
f: Poisson's ratio for continuous fiber.
m: Poisson's ratio for resin material.

∀sfp: Volume fraction of discontinuous fiber, ratio of the
volume  of  discontinuous  fiber  to  the  volume  of  composite
lamina.
∀mm: Volume fraction of resin matrix, ratio of the volume of
resin to the volume of composite matrix.
∀mp: Volume fraction of resin matrix, ratio of the volume of
resin to the volume of composite lamina.
∀f: Volume fraction of continuous fiber, ratio of the volume
of continuous fiber to the volume of composite lamina.
∀m:  Volume  fraction  of  matrix,  ratio  of  the  volume  of
composite matrix to the volume of composite lamina.
af: The ratio of average fiber length to fiber diameter =lf /df

df: Fiber diameter.
lf : Average fiber length.
The aspect ratio of the long fibers considered in the lamina
of interest cab be taken as (500/1) as a recommend value [28],
[29].

6 PROBLEM CHARACTERIZATION AND
MANIPULATION

The hybrid composite laminates considered in this work are
symmetric and anti-symmetric cross-plies composed of 4
layers and subjected to a tensile force 3000N with thermal
load represented by curing the structure at temperatures
ranging from 240–195℃, then it is cooled to a temperature of
23℃,  thus  there  is  a  residual  stresses  will  be  induced.  The
fibers of outer layers are oriented along the x-axis and those
of inner layers are oriented along the y-axis. The Generalized
Hooke’s Law of stress-strain relationship states that [17]:

=   . , ≥ 1  , ≤ 6                                                      (53)
Or the strain can be given as:

=   .                                                                                 (54)
Where   Cij and Sij are the stiffness and compliance matrices
respectively. For an orthotropic material having 3 mutual
perpendicular axes of symmetry, the properties vary
according to direction, thus Hooke's Law for such a material
can be minimized to:

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

=                                               *

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

                               (55)
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The material symmetry of orthotropic materials requires
that:
Sij = Sji , Thus =                                                   (56)

Additionally, if it is assumed that the fibers bear load in the
z direction and are isotropic, then all properties in the z-
direction are equal to the properties in the x-direction. It is
possible to derive the following relations [17]:

=   , =   , = = =     (57)
These relationships are important when input material
properties into ANSYS. Since the stiffness matrix must be
positive definite, it will be assumed plane stress and plane
strain conditions {all ‘3’ terms (which containing "3" are
neglected}. Then in the Generalized Hooke’s Law for the case
of plane stress, Cij is replaced by Qij, where ≥ 1, ≤ 3 such
that:

= =
∗

= =
∗

=
∗

= =
∗

= =                                                                          (58)
Since there are both thermal and tensile loads therefore:

= +
= + 0                                                                             (59)

Where M are the bending moments caused due to the
coupling of extension and bending. Combining thermal and
tensile effects, the equation for mid surface strains becomes:

− − = − − − − − −                                                      (60)

Where A’ is the compliance due to Q, B’ includes coupling
effects, and D’ terms include flexural rigidity for bending.
Since the laminate is symmetric, no bending occurs.
Thus, M =  =  = 0, then:
{ } = { }                                                                          (61)
Since M can be neglected,  does not need to be calculated.
To calculate , Aij should be inverted as following:

= ∑[ ]                                                                            (62)
Since this composite was cured at 220 oC but is sitting in a
room at 23℃. Thus the residual stresses resulting from the
temperature difference must be considered. The
temperature difference is calculated as under:
∆ = −                                                                       (63)
The thermal loads are expressed as:
{ } = ∑[ ] { } ∆                                                          (64)
But the stresses in each lamina, k, can be given as:
{ } = [ ] ({ } − { }  ∆ )                                                  (65)

7  THERMAL EXPANSION COEFFICIENTS OF THE
LAMINATE

It is still finally very important to determine the coefficients
of thermal expansion (CTE) namely the longitudinal and
transverse coefficients  respectively of the whole
laminate, since they are dependent on fiber volume fractions
of the constituents and their corresponding coefficients. It is
found in the relevant literatures that these coefficients can be
determined as [30], [31, [32]:

=      and
= (1 + ) + 1 + − (66)

Where: , , ,  ,  are the modulus of
elasticity, volume fraction and CTE of fibers and matrix
respectively. The values of CTE of fibers and matrix are
taken to be (4.95e-6 m/m/℃ for boron fiber and 60E-6
m/m/℃ for epoxy matrix) [33]. Values of  and , the
Poisson's ratios of boron fiber and epoxy matrix are (0.2 and
0.35 respectively) [32].

8  RESULTS AND DISCUSSION
from the performed analysis, it can be easily shown that the
normal stresses (both longitudinal and transverse) induced
are directly proportional to both curing temperature and
short fibers volume fraction percentage in composite matrix
for both symmetric and anti-symmetric structures at
constant external load. this can be attributed to the fact of the
increment in curing temperature leads to increasing of
thermal residual stresses with temperature rise. from the
other hand, increasing of short fiber volume fraction leads to
the increment of total elastic strength and shear rigidity of
the hybrid composite material resulting in maximizing of the
material resistance to the external applied loads. this is also
explained referred to by the definition of the stresses set up
in a material exposed to external or internal loads. figs. 6
through 9 display the changes of these normal stresses for
both structures, but it is seen that in anti-symmetric layout,
these stresses are lower than those in the symmetric laminate
and their changes are also less in divergence than their
counterparts in the symmetric scheme. this is of course due
to its lower resistance and larger response to the external
applied  loads  as  it  is  obviously  shown  through  the
comparison of the longitudinal displacement of both
structures for the same fiber volume fraction and curing
temperature range as listed in table-1.  figs. 6 and 7 show the
longitudinal and transverse normal stresses of the
symmetric layout while figs. 8 and 9 show the longitudinal
and transverse normal stresses of anti- symmetric layout. the
natural frequencies are unaffected by the curing temperature
variation even if there are some residual stresses left in the
hybrid composite material, but they are remarkably affected
by the change of short fibers volume fraction since the latter
directly affects both the total mass and elastic moduli of the
structure, this fact is clearly displayed through figs. 10 and
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11 for both symmetric and anti-symmetric stacking systems.
these natural frequencies are sensitive to type of stacking
system, such that the natural frequencies of symmetric
stacking are higher than their corresponding values of anti-
symmetric laminate. This is due to the fact that the overall
structural stiffness of symmetric layout is greater than that
of anti-symmetric one.

Fig.1: Three dimensional layered structural shell element 4node181.

Fig.2: Hybrid laminated composite plate structure.

Fig. 3: unidirectional 0° short fibers composite matrix.

Fig.4: Randomly oriented discontinuous fiber of the composite matrix.

Fig.5: The hybrid fiber reinforced composite lamina.

Fig.6: Effect of curing temp. on the longitudinal stresses (σx) of
symmetric stacking sequence.

Fig.7: Effect of curing temp. on the transverse in-plane normal stresses
(σy) of a symmetric stacking sequence.
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Fig.8: Effect of curing temp. on the longitudinal stresses (σx) of anti-
symmetric stacking sequence.

Fig.9: Effect of curing Temp. on the transverse normal stresses (σy) of
anti-symmetric stacking sequence.

Fig.10: Effect of curing Temp. on the natural frequency ωn of a
symmetric stacking sequence.

Fig.11: Effect of curing Temp. on the natural frequency ωn of an anti-
symmetric stacking sequence.

Fig.12: A comparison between effects of stacking sequence on the
natural frequencies.
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Fig.13: A comparison between the numerical and analytical results of
longitudinal stresses induced.
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